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BROOKARIEN Ordinary Synchrotrons

e Accelerating 1n an ordinary synchrotron
o All magnetic fields increase 1n proportion to particle
momentum

o Closed orbit, tunes identical at every energy
o Acceleration 1s sufficiently slow that either
e The RF frequency can be adjusted as the time of flight varies,
or
e The beam adiabatically tracks the RF bucket center

o Eddy current effects and losses (in magnet, coils,
vacuum chamber) can usually be neglected
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BROOKARIEN Rapidly Pulsed Synchrotrons

e Here we discuss rapidly pulsed synchrotrons
o Cases where you are 1n a hurry to accelerate
e Unstable particles, for instance
e Requires high gradient (and therefore high frequency) RF

o Time of flight varies more quickly than you can adjust
the RF frequency. Beam will not adiabatically track the

RF bucket center.
o Eddy currents and losses are potentially significant
e Losses 1n coils driving magnet
e Additional losses in iron
e Drive eddy currents in vacuum chamber
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BROOKARIEN Hybrid Synchrotrons

e Field of pulsed magnets must be generated by 1ron
o Too much stored energy 1f you use high field
superconducting

e Limits bending field to roughly 2 T
 Would like a higher average bend field
o More compact machine: important for both very high
energies and machines for applications
o When time 1s limited: need more RF for a longer ring

e Interleave superconducting fixed-field and bipolar
pulsed dipoles

 Acts like a dipole with average field
(BeLe+ By, Ly,)/(L-+ Ly,)
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BROOKARIEN Hybrid Synchrotrons

e Beam will not remain centered in magnets
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TN, History

e First proposed by Summers in 1996
o Subsequently discussed for other high energy
accelerators

e Garren & Berg produced a lattice design 1in 2011,
but with some 1tems still to be addressed

e Summers built and tested magnets 1n 2012,
demonstrating achieved field

e Witte created a dual-material dipole design in 2012
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BROOKARIEN Hybrid Synchrotrons

e Given a desired acceleration rate:
I o pmax(BC + BW) o pmin(BC o BW)
BBy,
e Can get large momentum range, but most of ring

dipoles are pulsed. Results in long ring.
e Reduce footprint with smaller momentum range,
greater fraction of cold dipoles
o Requires more stages; can potentially share tunnel

e High dipole fields important, particularly pulsed
dipoles

no L7}
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BROOKARIEN Time of Flight Correction

e Time of flight varies with momentum
o Not just velocity: beam motion in dipoles

e Insufficient time to re-phase RF

e Must correct time of flight
e Closed orbit will move off-axis in quadrupoles,
sextupoles
o Reduces average bend field
o Can arrange dipoles relative to quads so that quads help
bending
 Tighter interleaving of dipoles helps
o Also reduces magnet aperture, power required
o Inter-magnet spacing reduces efficiency
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BRODIARIEN Muon Collider Example

. Magnets: 10 T fixed, 1.5 T pulsed

Hybrid

P min P max

GeV/c GeV/e ms

Time Turns
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Yes
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bsasantd — Pulsed Synchroton: Lattice Design

o Interleaved arc cells and linacs

e Maintain constant tune through acceleration

e Zero dispersion 1n linacs

e Correct global chromaticity (collective effects)

e Maintain high synchrotron tune (collective effects)
e Reduce beam excursion

e Have sufficient longitudinal acceptance

e Have sufficient accelerating gradient
o Energy 1s discrete, magnet fields are continuous
o Matches, tunes, etc. will not be exact
o Want as many acceleration steps as 1s reasonable
o Compact arc cells
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BROOKARIEN Pulsed Synchrotron: Arc Cell

e Unit cell with arc and linac
e« Minimum amount of bend per cell to create
o First-order achromat
o Cancellation of sextupole geometric nonlinearities

e Arc 1s 2z achromat with four 7 /2 FODO cells

o D quads on ends to minimize horizontal orbit excursion
o 3 sextuple families to correct

e Chromaticity for full cell

e Second-order dispersion

e Linac has 3 internal quads, different from arc quads
o Permits variation of cell tune

Cell: FL.2/2 |[REF DL 'RF FLL1 RE DE B F B D B F B D2

Arc:
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BROGKAMEN, Magnet Design Principles

o Want high field

e Pulsed, so need to watch losses: 1iron and coils

e Coil losses: I°R and eddy current
o Reduce IR losses: distribute current over a larger area
o Longitudinally transpose cable strands

e Three types of losses 1n 1ron
o Hysteresis: per pulse, only a weak function of frequency
e Can also get worse with very thin laminates
o Eddy currents:
 Better with higher resistivity
e Increases with frequency
« Better with thinner laminates

o Excess losses: eddy currents at grain boundaries?
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BROOKARIEN Hysteresis Curves

0.1 mil, 2000 Hz

0.1 mil, 400 Hz
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Arnold Magnetic Technologies, grain oriented steel sheets
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Material Resistivity Dipole Field

u€cm T
Pure Iron 10 1.75
3.5% Si Steel 40 1.55
3.5% Si Steel, GO 50 1.8
6.5% Si Steel 82 14
Fe-Co 44 2.0

BROOKHPRAJEN Iron Parameters
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TN, Material Choice

e Fe-Co 1s great, but Co activation a concern (but

possibly manageable)

e Grain oriented steel almost as good, but
o Field quality 1ssues, since field lines pinned along grains
e Assembly and stamping tolerances
e Systematic variations in material properties
o Simulations don’t converge for the nonlinear case, so no
way to compute requirements
e But recent positive results (WG2 talk, B. Cowan, Tech-X)

o Unclear how to obtain permeability tensor needed for
simulations
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TN, Material Choice

e Pure 1iron good field, but low resistivity: potentially
high losses

o Good material (VACOFER S1) only at largish
thicknesses (200 ym), more eddy current losses

e 6.5% Si steel very low losses, but lower field

e 3.5% Si1 steel a good compromise, the usual choice
e We propose a hybrid design

o Pole in 3.5% Si steel for higher field

o Back yoke in 6.5% Si steel for low losses
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BRODKARIEN Updated Magnet Design

e Changed geometry to reduce eddy current losses

e Stray field primarily from gap

e Long edge of coil apprximately parallel to field lines
e Reduces peak current density
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BROGIARIEN Updated Magnet Design
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BROOKHRAEN Overall Losses

"« Losses dominated by pole

e 6.5% Si1 steel significantly reduces back yoke losses
e Eddy current losses 1n coil even smaller
o Could be reduced further by transposing cable strands
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bt Magnets: Computational Challenges

e Mostly centered around nonlinear B-H curves and
poor convergence
o Any simulation of grain oriented steel
o Hysteresis simulations of non-oriented steel when going
into saturation. Would probably drive into saturation to
get linear rise when operating
e Size of problem when going into three dimensions
o End effects

o Longitudinal transposition of cable strands
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bt Magnets: Computational Challenges

e Importance of computations
o Designing for field quality while pushing field limits
o Having a reasonable estimate of power losses
o Linearity of drive-to-field response
e Having correct response curves for materials needed
as 1nput
o Qur concerns are different from usual high-frequency
1ron users
o They care mostly about power, we care about field
strength and details of the field distribution at high field
o We would like to do a cost-benefit analysis for some
interesting materials (e.g., high-purity iron)
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BROOKHPAEN Conclusions

e Hybrid pulsed synchrotrons allow rapid, efficient
acceleration with a relatively compact machine

« Beams moving far off-axis as fields vary 1s a unique
lattice design process

e High field and low losses are key criteria for magnet
designs

e Have pulsed dipole designs with manageable losses

e Understanding iron properties 1s important for
optimizing magnet designs

e Some questions we have expose limitations in
magnetic simultaion codes
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BROOKHPAEN Future Directions

 Picking lattice parameters for a muon collider
acceleration chain

e Choosing a good design for time of flight correction

e Measurement of necessary properties of magnet
steel

e Improving magnet simulation code behavior for
nonlinear magetization curves

e Large scale simulations of some 3-D effects

e Making a first pass at a power supply design

e Studying quadrupole and sextupole designs
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